
RESEARCH POSTER PRESENTATION DESIGN © 2019

www.PosterPresentations.com

By 2035, we are projected to capture around 2.1 trillion terabytes
of data, all of which needs to be stored around the world and
managed and optimized to be made useful.

Data and Scalability

• To prevent unauthorized access
to this data, the database stores
access control policies that are
specified by the user.

• To retrieve any data, the
database needs to be queried.

IoT Workload Results

❖ Research Paper: “Sieve: A Middleware Approach to Scalable Access
Control for Database Management Systems” → Pappachan, P., Yus,
R., Mehrotra, S., & Freytag, J.-C. (2020). Sieve. Proceedings of the
VLDB Endowment, 13(12), 2424–2437.

• Newer IoT environments
collect sensitive data with a
wide array of sensors from
thousands of users in real-time.

Database & Internet Privacy Lab at Portland State University; Undergraduate Research and Mentorship Program

Satvik Mudgal, Anadi Shakya, Primal Pappachan

satvik@pdx.edu, ashakya@pdx.edu, primal@pdx.edu

Scalable Fine-Grained Access Control for Protecting Dynamic IoT Data in Relational Databases

Query Database

Every policy evaluated

Result sent back

→ Current DBMSs rewrite a query to include all policy conditions
in the query itself, making exploitation of indices challenging.

Factorization with a Guarded Expression

Policies in Database

1. QC=John, Alice; OC=after 9AM, at FAB130,KMC245

2. QC=Alice, Bob; OC=after 1PM, at FAB130, CH130

[FAB130]

(Alice, 9AM, KMC245) V (Bob, CH130)

V

Guard 1

Index on location used to generate Guard

To assess the effectiveness and performance of Sieve, we need to
develop a workload that simulates realistic dynamic IoT
environments.

Access
Control
Policies

• Object Conditions (OC)
Owner, Allowed Time, Location

• Query Condition (QC)
Querier, Purpose

• Policy Action
Default action in policy

is set to allow

Which users have
access to your data?

What location data of
yours can be accessed?

What is the purpose of
retrieving this data?

• General Data Protection Regulation (GDPR) May 2018
• California Consumer Privacy Act (CCPA) Jan 2020

Sieve

Rewritten
with every

policy

User
Generation

Policy
Generation

Query
Generation

➢ 36436 Users – Undergraduates, Graduates, Faculty,
Staff, Visitors

➢ 1417 Possible Queriers – Authorized queriers are
only faculty and staff.

➢Policy Restriction Examples –
1. Visitor data accessible from 9AM-5PM.
2. Start Dates and End Dates limited between

02/01/2018-04/30/2018

Workload Generator

Using cache to
store guarded
expressions,
execution time
improves.

The same number
of policies are
evaluated against
the same database
with and without
caching.

Data From: https://www.statista.com/

of Access Control
Policies

α
Evaluation Cost

Fine-Grained Access Control is a method of security
allowing very specific control over who can access
what data or resources. To make this scalable, the

evaluation cost needs to be minimized.

Optimizing policy evaluation can be done by reducing the number of
tuples, and the number of policies that need to be evaluated.

Sieve, in its middleware implementation, rewrites queries
with Guarded Expressions (GEs).

It is a mechanism of factorizing policies by exploiting
indexes created on the database.

It scans policies to check for common terms that use
available indexes and groups the terms as a guard term.

Sieve Factorizes Policies, Creates Indexes, and
Generates Guarded Expressions which help in:

1. Reducing Policy Overhead
2. Reducing number of tuples being checked for

each query

Having FAB130 factorized out as a guard, all other
policies can be grouped with the guard to reduce the
total number of policies to be evaluated.

Every querier without authorization for FAB130 is denied
access, without having to evaluate the rest of the policies.

This workload uses the dataset to assess Space
Utilization in a Smart Campus.

Location data and timestamp data from users allows
the querier to know the amount of user traffic a specific

location accommodates in a specific timeframe.

Uses MySQL
Connection
Manager to
retrieve all

36436 users in
the database.

Generates
policies by
randomly
selecting
querier

conditions,
timestamps and
dates from the
range specified
in the database.

Number of
policies created
per user can be

varied.

Generates
queries based on

templates.
1. Queries

relevant to
location data.

2. Queries about
user activity.

3. Queries about
users at a
specific
location.

The Workload Generator simulates a real-world IoT
environment, where each query is answered by checking
its compliance with Fine-Grained Access Control Policies

Using the functionality of the Workload Generator, we test
the performance of Sieve by:
1. Inserting specific number of policies before each query.
2. Storing the created guarded expressions in cache

memory.
3. Checking if the next incoming query uses any guarded

expressions stored in the cache.
4. Calculating hit-rate for guarded expressions in cache for

every incoming query.

• Hit: No guard generation or regeneration
• Soft-Hit: Guard regeneration required
• Miss: Guard generation required

❑ An increase in the number of policies per query
requires a greater degree of factorization

❑ The chart reflects that caching is more effective for
cases with fewer policies per query.

❑ A higher number of policies result in a stale cash as
Sieve keeps regenerating new guards for newer

queries

Future Work

Creating new
workload scenarios

Introducing new
policy conditions

for Space
Utilization

Generating new
query templates

that retrieve more
information about

users and
locations

Testing
the same
workload

on
varying
cache
sizes

mailto:satvik@pdx.edu
mailto:ashakya@pdx.edu
mailto:primal@pdx.edu
https://www.statista.com/

	Slide 1

