
BL(u)E CRAB: A User-Centric Framework for
Identifying Suspicious Bluetooth Trackers

Dylan Conklin
Portland State University

Portland, OR USA
dconklin@pdx.edu

Primal Pappachan
Portland State University

Portland, OR USA
primal@pdx.edu

Roberto Yus
University of Maryland, Baltimore County

Baltimore, MD USA
ryus@umbc.edu

Abstract—Given the pervasiveness of Bluetooth Low Energy
(BLE)-based devices, detecting unwanted or suspicious trackers is
challenging, especially due to their heterogeneity, cross-platform
compatibility issues, and inconsistent detection methods. BL(u)E
CRAB identifies suspicious BLE trackers based on various risk
factors within minutes. It does so by collecting information
including the number of encounters, time with the user, distance
traveled with the user, number of areas each device appeared in,
and device proximity to user. After collecting this information,
BL(u)E CRAB performs an outlier detection analysis to flag
suspicious devices. BL(u)E CRAB presents this information in a
simple, intuitive, and customizable way for the user to determine
which devices pose the biggest threat to them based on their
context.

Index Terms—Bluetooth Low Energy (BLE), BLE trackers,
Suspicious device detection, Context-aware monitoring

I. INTRODUCTION

Devices that use Bluetooth Low Energy (BLE) surround
us, including, among many others, smartphones, smartwatches,
and audio devices. Among them, trackers are small, low-power
devices that use a crowd-sourced model to communicate their
location to a centralized server, relying on nearby higher-
powered devices to relay location updates to a server. Users
who own these trackers can view the tracker’s location via
an app or web service and interact with the device remotely.
BLE trackers are commonly used to track a user’s possessions
for convenience and to counter theft. However, assailants,
which may include friends, family, coworkers, and current or
ex-romantic partners, can misuse these devices for stalking.
Stalkers commonly use BLE trackers to stalk their victims by
placing them in cars or backpacks[1] to receive updates on
their victim’s location, revealing their daily habits, where they
live, and when they are likely to be alone.

Manufacturers have taken measures to prevent stalking via
BLE trackers, such as alerting victims when a tracker is
detected and installing speakers to help victims find it when
detected. However, these features are sometimes limited to
specific devices capable of running the manufacturer’s apps.
There has been some progress from the industry in developing
protocols, such as Apple’s Find My and Google’s Find My
Device protocols[2], which manufacturers can adopt to fight
unwanted tracking. However, many other third-party services
rely on manufacturer-specific networks that cannot adequately
alert users of unwanted trackers in their vicinity, and these

services often are incompatible with each other1, as multi-
ple manufacturers, devices, and services are available. Many
of these services are also proprietary, so their methods of
detecting trackers are not transparent. Stalking victims may
be unaware of tracking unless or until their cellular device
identifies the tag as a tracker, and these features are unavailable
to victims until their device makes this identification. These
incompatibilities are problematic because a stalker could use
a tracker that would not be detected by the victim’s phone,
requiring the victim to have multiple smartphones from dif-
ferent manufacturers with many BLE tracker apps installed on
each phone to detect unwanted trackers adequately.

AirGuard[3] and BLE-Doubt[4] do not require manufac-
turer participation and are transparent about how they decide
whether or not a device is suspicious. While the behavior of
suspicious devices changes with time and context, these apps
rely on only a few metrics with fixed thresholds. AirGuard
only uses fixed time and distance thresholds. In contrast,
BLE-Doubt uses fixed time and distance thresholds using an
approach to group data points based on time and categorize
devices based on their trajectory. Evaluating a device’s threat
potential should consider a broader set of factors, and a
flexible approach to establishing thresholds can provide better
insight. BL(u)E CRAB is a decentralized and manufacturer-
neutral approach that attempts to improve upon prior works by
collecting several adaptable risk factors (outlined in Section
II-B) that do not rely on fixed time and distance thresholds
to show users why it flags specific devices as suspicious.
It introduces an adaptable risk assessment framework that
evaluates various risk factors relevant to the user’s context
and nearby devices. Our contributions include this framework
and a mobile application that realizes this framework.

II. OVERVIEW OF BL(U)E CRAB

Figure 1 provides an overview of BL(u)E CRAB’s ar-
chitecture. BL(u)E CRAB scans for Bluetooth Low Energy
(BLE) devices in the vicinity of a user device (such as
AirTag, SmartTag, and Tile) while recording the time, location,
and signal strength for each tracker when they are detected.
This information is stored on-device in a local database and

1For example, Tile devices only work with the Tile app and Chipolo devices
only work with any of Apple’s Find My, Google’s Find My Device, or
Chipolo’s proprietary apps.



Calculate Risk 
Factor Data

Database Calculate Risk Scores 
(Z-Scores)

User Filters

Time Filter

Flag Devices

Risk Scores

Risk Factor Data Suspicious 
Devices

Detect Outliers 
(IQR)

Fig. 1. Architecture of BL(u)E CRAB.

periodically retrieved with filters on time to obtain the most
recent data. It then calculates the risk scores associated with
each risk factor (as defined in Section II-B) for every device
using outlier detection. BL(u)E CRAB marks devices with an
outlier score in any metric as suspicious. Users can turn on
or off various risk factors relevant to their context to filter
the results, and BL(u)E CRAB displays details of any devices
marked as suspicious based on the selected factors. BL(u)E
CRAB relies on the Flutter SDK, which enables cross-platform
deployment from a single codebase.

A. Scanning Method

BL(u)E CRAB collects data using the device’s Bluetooth
scanner and GPS location (if the user permits location scan-
ning) by scanning for Bluetooth signals broadcast by sur-
rounding devices. BL(u)E CRAB logs the transmitting device’s
MAC address and optional identifiers (services, manufacturers,
and platform), the time the signal was received, the user’s
location, and the transmitting device’s signal strength (RSSI).
BL(u)E CRAB utilizes foreground scanning instead of back-
ground scanning because it helps to collect more accurate data
by allowing for more frequent updates2, at the expense of
higher power consumption. While scanning, BL(u)E CRAB
checks suspicious devices and filters stale data to prevent
devices that do not change their identifiers over time from
skewing risk scores toward flagging non-threatening devices.

B. Risk Factors

BL(u)E CRAB calculates risk scores based on factors de-
rived from data collected during scanning to determine each
device’s likelihood of threatening the user. BL(u)E CRAB
evaluates all these risk factors using a static threshold with a
default value that the researchers experimentally determined,
and the user can modify as necessary.

1) Time With User: Measures the sum of durations between
each timestamp shorter than the threshold by sorting the data
points associated with the device by time. BL(u)E CRAB
removes each duration exceeding the time threshold because
they indicate periods when it did not detect the device.

2Apple devices hide Find My devices scanned in the background[1], making
data collection difficult for devices like AirTags.

2) Incidence: Counts the number of non-overlapping times-
tamp clusters where a device is detected. Any two consecutive
timestamps whose difference is under the time threshold
belong to the same cluster.

3) Distance Traveled: Measures the sum of the distances
between locations where BL(u)E CRAB detects the device,
provided the time difference between those two detections is
under the threshold.

4) Area Count: Counts the amount of non-overlapping
location clusters where a device is detected. Each cluster in-
cludes any two locations whose distance is under the threshold.

5) Device Proximity: Measures the scanned devices’ aver-
age signal strength (RSSI) over time. Devices measure RSSI
in dBm, with values close to 0 representing strong signals and
below -90 representing weak signals.

C. Threat Potential Calculation

A device’s threat potential derives from risk scores com-
puted from the risk factors across all recently scanned devices.
BL(u)E CRAB uses single-metric scores to compartmentalize
risk based on a factor’s context. BL(u)E CRAB evaluates
the scores for each risk factor using the Z-score formula,
zrf =

xrf−µrf

σrf
, where xrf is the factor value, µrf is the

mean of the factor values across all devices, and σrf is the
standard deviation of the factor values.

Using these risk scores, BL(u)E CRAB identifies outlier
values by applying two multipliers (e.g., 1.5 and 3 in our
demo) of the interquartile range (IQR = Q3−Q1) above Q3.
Using the equation threshold = Q3 + (IQR +multiplier),
mild outliers exceed the threshold for the smaller multiplier,
and extreme outliers exceed the threshold for the greater
multiplier. BL(u)E CRAB flags all devices with an outlier
value, indicating a more significant threat for that risk factor.

III. DEMO DESCRIPTION

This demonstration intends to showcase BL(u)E CRAB’s
capabilities in scanning and detecting unwanted BLE trackers
in a user’s vicinity. The demo scenario involves a smartphone
installed with BL(u)E CRAB and multiple BLE-based trackers
(such as AirTag, Tile, SmartTag, or Pebblebee). We will set
up the app with sample scan data from BLE-Doubt[4] for
users who wish to skip scanning and observe the metrics.
The screenshots in the Figures below derive from a modified
version of this dataset. The original dataset anonymized the
devices, so we added device identifiers to differentiate between
them. The BL(u)E CRAB source code and sample datasets
are available on GitHub3. A brief video showcasing the
functionality of BL(u)E CRAB can seen on YouTube4. The
steps in the demonstration scenario are as follows:

1) Users start with the scanner view and can begin scan-
ning by pressing the ”Start Scanning” button (Figure
2). A notification appears once a suspicious device is
detected, and BL(u)E CRAB displays the report view
upon tapping the notification or the report button.

3https://github.com/DIPrLab/BLuE-CRAB
4https://youtu.be/J9vjPuSkJyU



Fig. 2. Scanner view with the scan
button at the bottom.

Fig. 3. Report view with tiles for
flagged devices.

Fig. 4. Device detail view displaying
identifiers along with risk factors.

Fig. 5. Map of where the selected
device traveled with the user.

2) At the top of the report view are filter buttons where
users can toggle each risk factor based on their context
(Figure 3). For example, users may want to turn off the
incidence factor at an event with many people, like a
conference, where they may run into the same devices
multiple times. After BL(u)E CRAB flags a device as
suspicious, it appears on the report page with a colored
circle indicating how many risk factors exceeded the
threshold. If the device broadcasts its name, it will
appear with its ID. The user can press the device tile
to open the device details view, see more information
about a device, and find out why BL(u)E CRAB flagged
it as suspicious.

3) Once a suspicious device is selected, BL(u)E CRAB will
present the user with a table displaying the device identi-
fier (UUID), device name (if provided), device platform
(if provided), device manufacturer(s) (if provided), and
risk factors (Figure 4). At the bottom of the device detail
view is a button labeled ”Device Routes,” which opens
a map showing all the locations where the suspicious
device appeared while scanning.

4) The map view helps users identify where and how the
suspicious device entered their vicinity (Figure 5). The
map shows red lines representing the user’s approximate
location when BL(u)E CRAB detected the selected de-
vice, with dots marking each path’s starting and ending
points. It is fully interactive, so the user can inspect
specific areas to see more details and scroll along the
path the device traveled with them.

IV. PRIVACY CONSIDERATIONS

BL(u)E CRAB protects user privacy by not collecting user
login data, remaining independent from any first-party or
third-party web services, and storing all data in an on-device
database rather than uploading it elsewhere. BL(u)E CRAB
does not require location permissions to operate nor block
functionality should the user decline location access.

V. CONCLUSIONS AND FUTURE WORK

BL(u)E CRAB aims to improve existing methods of detect-
ing suspicious BLE devices based on risk factors with dynamic
thresholds, unlike the previous methods, which rely on limited
information and static thresholds. BL(u)E CRAB focuses on
an adaptable, user-centric approach to evaluating suspicious
devices, which can be adjusted to match the user’s preferences
based on their context. Avenues for future work include
conducting detailed empirical evaluations, adding more filters
based on the user’s context, and explaining why a device is
tagged suspicious in natural language.

REFERENCES

[1] H. et al., “Please unstalk me: Understanding stalking
with bluetooth trackers and democratizing anti-stalking
protection,” PoPETS Proceedings, 2024.

[2] I. Apple. “Apple and google lead initiative for an industry
specification to address unwanted tracking.” (2023).

[3] H. et al., “Airguard - protecting android users from
stalking attacks by apple find my devices,” ser. WiSec
’22, Association for Computing Machinery, 2022, ISBN:
9781450392167.

[4] B. et al., “Ble-doubt: Smartphone-based detection of
malicious bluetooth trackers,” in SafeThings 2022, IEEE.


